Нелинейные явления в волокне

Нелинейные явления в волокне

 

Такие явления обусловлены нелинейным откликом вещества на увеличение интенсивности светового потока. В результате оптические характеристики среды (электронная поляризуемость, показатель преломления, коэффициент поглощения) становятся функциями напряженности электрического поля световой волны, так что поляризация среды начинает нелинейно зависеть от напряженности поля, а волны с различными частотами и направлениями распространения - оказывать влияние друг на друга.

Нелинейные явления в оптическом волокне усиливаются с ростом интенсивности поля, т. е. мощности потока, приходящейся на единицу площади поперечного сечения сердцевины волокна. Чтобы увеличить дальность и скорость передачи, стремятся уменьшить накопленную дисперсию кабеля, поэтому применяют одномодовое волокно, имеющее малый диаметр сердцевины (10 мкм и менее). Однако использование одномодового носителя, а также низкие оптические потери могут приводить к возникновению высокой плотности потока излучения на достаточно протяженных участках.

При анализе технологии WDM следует учитывать следующие явления: нелинейное преломление, вынужденное рассеяние света и четырехволновое смешение.

Нелинейное преломление вызвано зависимостью показателя преломления сердцевины волокна, а значит, и фазы выходного сигнала от интенсивности оптического сигнала. Когда мощность сигнала достаточно велика, ее колебания приводят к фазовой самомодуляции (ФСМ) и фазовой кросс-модуляции (ФКМ). В первом случае сигнал воздействует сам на себя, во втором - на сигнал в другом канале. Каждый из этих эффектов может создавать помехи, когда передача ведется с помощью фазовой манипуляции. Максимально допустимое значение канальной мощности, обусловленное ФСМ и ФКМ, обратно пропорционально числу мультиплексируемых каналов.

Вынужденное рассеяние света представляет собой рассеяние на элементарных возбуждениях среды, индуцированных рассеиваемой волной. Поскольку процесс рассеяния стимулируется самим рассеиваемым светом, рассеянное излучение характеризуется высокой степенью когерентности, узкими диаграммами направленности отдельных компонентов и интенсивностью, сопоставимой с интенсивностью падающего света. Таким образом, при возбуждении среды мощным световым источником происходит модуляция ее параметров, что приводит к амплитудной модуляции рассеянного света, а следовательно, к появлению в нем новых спектральных компонентов.

Самые важные виды рассматриваемого явления - вынужденное комбинационное рассеяние (ВКР), иногда называемое рамановским, и вынужденное рассеяние Мандельштама-Бриллюэна (ВРМБ). Комбинационное рассеяние связано с возбуждением новых колебательных и, в меньшей степени, вращательных энергетических уровней частиц среды, а ВРМБ - с появлением в среде гиперзвуковых волн.

Влияние ВКР невелико (менее 1 дБ на канал), если произведение суммарной мощности каналов на разность между частотами крайних каналов меньше 500 Вт·ГГц. Другими словами, данный эффект существен лишь для систем с сотнями каналов.

В отличие от ВКР, излучение, рассеянное по механизму Мандельштама-Бриллюэна, распространяется только в направлении, противоположном направлению падающего. Его интенсивность значительно выше, чем при ВКР; ВРМБ порождает перекрестные помехи, если разность несущих частот составляет 11 ГГц, а передача ведется в противоположных направлениях. Другое отличие от ВКР состоит в том, что максимально допустимая мощность канала не зависит от числа мультиплексируемых каналов и расстояния между ними. Ее типичное значение для высокоскоростных линий дальней связи равно 10 мВт. ВРМБ является единственным из описываемых нелинейных явлений, влияние которого зависит от скорости передачи. С ростом последней оно уменьшается, причем особенно быстро - при использовании фазовой манипуляции. Им можно пренебречь для импульсов короче 10 нс.

Четырехволновое смешение заключается в том, что при наличии двух попутных волн с частотами f1 и f2 (f1 < f2) возникают еще две волны, с частотами 2f1 - f2 и 2f2 - f1, распространяющиеся в том же направлении и усиливающиеся за счет исходных. Аналогичные процессы происходят и в том случае, когда имеются три (или больше) падающие волны. При этом должно быть обеспечено согласование значений частот и волновых векторов всех волн.

Данный вид нелинейности теснее других связан с параметрами системы: на него влияют не только длина волокна и площадь поперечного сечения его сердцевины, но и расстояние между соседними каналами и дисперсия. Изо всех рассмотренных явлений четырехволновое смешение имеет наибольшее значение для современных DWDM-систем.

Четырехволновое смешение можно устранить, выбрав неодинаковые разности частот между соседними каналами. Кроме того, данный эффект подавляется дисперсией, так как она нарушает согласование фаз. По этой причине волокно со смещенной дисперсией (Dispersion-Shifted Fiber, DSF), созданное в целях устранения хроматической дисперсии в диапазоне 1550 нм, малопригодно для WDM с шагом 50 ГГц (0,4 нм) и меньше; вместо него используют специальные виды волокна (TrueWave, AllWave и др.).

В обычном одномодовом волокне со ступенчатым профилем показателя преломления четырехволновое смешение между каналами f1 и f2 отсутствует, если f2 - f1 > 20 ГГц. Максимально допустимая мощность канала в данном случае практически не зависит от числа мультиплексируемых каналов. Для обычного волокна при WDM с расстоянием между каналами 10 ГГц она равна нескольким милливаттам.

Необходимо отметить, что нелинейность среды играет в волоконно-оптической связи двоякую роль. С одной стороны, она ограничивает скорость и дальность передачи, с другой - может быть обращена во благо. Например, ВРМБ можно использовать для реализации режима ввода/вывода каналов. Кроме того, ФКМ и четырехволновое смешение применяются в волновых конверторах для переноса полезного сигнала с одной несущей длины волны на другую, а ВКР и ВРМБ - в волоконных лазерах и усилителях.

 

НАЗАД

Содержание

ВПЕРЕД